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1

Affine root systems

1.1 Notation and terminology

Let E be an affine space over a field: that is to sayE is a set on which a
K -vector spac&/ acts faithfully and transitively. The elements\¢fare called
translationsof E, and the effect of a translatiane V on x € E is written
X+ v. If y =X+ vwewritev =y —X.

Let E’ be another affine space ovir, and letV’ be its vector space of
translations. A mapping : E — E’is said to beaffine-linearif there exists a
K-linear mappingDf : V — V’, called thederivativeof f, such that

1.1.1) f(x +v) = f(x) + (DF)().

forall x € E andv € V. In particular, a functionf: E — K is affine-linear if
and only if there exists a linear formf: V — K such that (1.1.1) holds.

If f,g:E — K are affine-linear and, u € K, the functionh = Af +
ug: X — Af(x) + ng(x) is affine-linear, with derivativdh = ADf + uDg.
Hence the st of all affine-linear functiond : E — K isaK-vector space, and
D isaK-linear mapping of onto the duaV/* of the vector spac¥. The kernel
of D is the 1-dimensional subspa€é of F consisting of the constant functions.

Let F* be the dual of the vector spaée For eachx € E, the evaluation
mapey : f — f(x) belongs toF*, and the mapping — ¢, embedsE in F*
as an affine hyperplane. Likewise, for eack V lete, € F* be the mapping
f = (Df)(). If v=y—x,wherex, y € E, we haves, = gy — &, by (1.1.1),
and the mapping — ¢, embeds/ in F* as the hyperplane through the origin
parallel toE.

From now onK will be the fieldR of real numbers, and will be areal vector
space of finite dimension > 0, equipped with a positive definite symmetric
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2 1 Affine root systems

scalar product &, v>. We shall write
v] = <v, v>!/?

for the length of a vectov € V. ThenE is a Euclidean space of dimension
and is a metric space for the distance functigr, y) = |x — y|.

We shall identifyV with its dual spacé&/* by means of the scalar product
<u, v>. For any affine-linear functiori: E — R, (1.1.1) now takes the form

(1.1.2) f(x +v) = f(x) + <Df, v>

andDf is thegradientof f, in the usual sense of calculus.
We define a scalar product on the sp&cas follows:

(1.1.3) <f, g> = <Df, Dg>.

This scalar product is positive semidefinite, with radical the one-dimensional
spaceF° of constant functions.
Foreachv #0inV let

vV = 2v/v)?
and for each non-constafite F let

£V =21/
Also let

Hi = f7%(0)

which is an affine hyperplane i&. The reflection in this hyperplane is the
isometryss: E — E given by the formula

1.1.4) si(X) =x — fY(X)Df =x — f(x)Df".
By transpositionss acts onF: s¢(g) = go sf‘1 = g o S¢. Explicitly, we have
(1.1.5) st(@ =g—<f’,g>f =g—<f,g>f"

forg e F.
Foreachu #0inV, lets,: V — V denote the reflection in the hyperplane
orthogonal tau, so that

(1.1.6) su(v) = v — <u, v>u".



1.2 Affine root systems 3

Then it is easily checked that
1.12.7) Dst = spt

for any non constant € F.

Let w: E — E be an isometry. Themw is affine-linear (because it pre-
serves parallelograms) and its derivatbe is a linear isometry of/, i.e., we
have <Pw)u, (Dw)v> = <u, v> for all u, v € V. The mappingw acts by
transposition orF: (wf)(x) = f(w~1x) for x € V, and we have

(1.1.8) D(wf) = (Dw)(Df).

For eachv € V we shall denote by(v) : E — E the translation by, so
thatt(v)x = x + v. The translations are the isometriestbfvhose derivative
is the identity mapping of. On F, t(v) acts as follows:

(1.1.9) t(v)f = f —<Df,v>c
wherec is the constant function equal to 1. Foxie E we have
(t)f)X) = f(x —v) = f(x) — <Df, v>.
Letw: E — E be anisometry and lete V. Then
(1.1.10) wt()w™! = t((Dw)v).
For if x € E we have

(wt@)w H(x) = ww X +v) = x + (Dw)v.

1.2 Affine root systems

Asin§1.1 letE be areal Euclidean space of dimensios 0, and letV be its
vector space of translations. We giZeghe usual topology, defined by the metric
d(x, y) = |x — y|, so thatkE is locally compact. As before, I¢ denote the
space (of dimension + 1) of affine-linear functions oi.

An affine root systeron E [M2] is a subsetS of F satisfying the following
axioms (AR1)-(AR4):

(AR 1) SspansF, and the elements of S are non-constant functions.
(AR 2) s4(b) € Sforalla, be S.
(AR 3) <aY,b>eZ foralla,be S.
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The elements o8 are calledaffine roots or justroots Let Ws be the group
of isometries ofE generated by the reflectiosgfor all a € S. This groupWs
is theWeyl groupof S. The fourth axiom is now

(AR 4) Ws (as a discrete group) acts properly on E.

In other words, ifK; andK, are compact subsets Bf the set ofw € Ws such
thatwK, N Ky # @ isfinite.

From (AR3) it follows, just as in the case of a finite root system, thatifid
Aa are proportional affine roots, thenis one of the number&%, +1,+2. If
ace Sand%a ¢ S, therootais said to beéndivisible If eacha € Sisindivisible,
i.e., if the only roots proportional ta € Sare+a, the root systensis said to
bereduced

If Sis an affine root system of, then

S'={a":aeS

is also an affine root system df called thedual of S. ClearlySandS” have
the same Weyl group, ard’” = S,

Therank of Sis defined to be the dimensianof E (or V). If S is another
affine root system on a Euclidean spd€e anisomorphismof Sonto S’ is
a bijection of Sonto S that is induced by an isometry & ontoE'. If S'is
isomorphic tor Sfor some nonzera € R, we say thaSandS aresimilar.

We shall assume throughout thatis irreducible, i.e. that there exists no
partition of Sinto two non-empty subse, S such that |, a,> = 0 for all
a; € S andas € S.

The following proposition ([M2], p. 98) provides examples of affine root
systems:

(1.2.1) Let R be an irreducible finite root system spanning a real finite-
dimensional vector space V, and let, v> be a positive-definite symmetric
bilinear form on V, invariant under the Weyl group of R. For eack R and

r € Z let g, denote the affine-linear function on V defined by

Ayr(X) = <a, x> +r.

Then the set @) of functions @, wherex € R andr is any integer iga ¢ R
(resp. any odd integer i%ot € R) is a reduced irreducible affine root system
onV.
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Moreover, every reduced irreducible affine root system is similar to either
S(R) or (R)", whereR s a finite (but not necessarily reduced) irreducible root
system ([M2],56).

Let Sbe an irreducible affine root system on a Euclidean sfiacthe set
{Ha: a € S} of affine hyperplanes ik on which the affine roots vanish is locally
finite ((M2], §4). Hence the seE — | J,.s Ha is open inE, and therefore so
also are the connected components of this set, dihcelocally connected.
These components are called #eovesof S, or of Ws, and it is a basic fact
(loc. cit.) that the Weyl groupVs acts faithfully and transitively on the set of
alcoves. Each alcove is an open rectilineaimplex, where is the rank ofS.

Choose an alcov€ once and for all. Lek; (i€l) be the vertices ot,
so thatC is the set of all pointx = ) ;X such that)_ 1 = 1 and each,
is a positive real number. L&8 = B(C) be the set of indivisible affine roots
a € Ssuch that (i)H, is a wall of C, and (ii)a(x) > 0 for allx € C. ThenB
consists oh + 1 roots, one for each wall @&, andB is a basis of the spade
of affine-linear functions ofe. The setB is called abasisof S.

The elements oB will be denoted byg (i 1), the notation being chosen
so thata; (x;) = 0if i # j. Sincex; is in the closure o€, we haves; (x;) > 0.
Moreover, <;, a;> < 0 whenever # |.

The alcoveC having been chosen, an affine ra@ot Sis said to bepositive
(resp.negativg if a(x) > 0 (resp.a(x) < 0) for x € C. Let S* (resp.S")
denote the set of positive (resp. negative) affine roots; $fienS™ U S- and
S- = —S". Moreover, eacla € S' is a linear combination of the, with
nonnegative integer coefficients, just as in the finite case ([}8],

Leta; = Dg; (i<l). Then 4+ 1 vectorsy; € V are linearly dependent, since
dimV = n. There is a unique linear relation of the form

Zmi(xi =0
iel

where them; are positive integers with no common factor, and at least one of
them; is equal to 1. Hence the function

(1.2.2) c= Zmia,-
iel

is constant orE (because its derivative is zero) and positive (because it is
positive onC).
Let

¥ ={Da:aeS}.
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ThenX is an irreducible (finite) root system W. A vertexx; of the alcoveC is

said to bespecialfor Sif (i) m; = 1 and (i) the vectors; (jel, j # i) form

a basis ofx. For each affine root syste@ithere is at least one special vertex
(see the tables ifi1.3). We shall choose a special vertex once and for all, and
denote it byxg (so that 0 is a distinguished element of the indexI3efhus

mo = 1in (1.2.2), and if we takeg as origin inE, thereby identifyinge with

V, the affine root; (i # 0) is identified withe; .

The Cartan matrix and the Dynkin diagram of an irreducible affine root
systemSare defined exactly as in the finite case. Qagtan matrixof Sis the
matrix N = (nj)i jer Wheren;; = <a”, a;>. It hasn + 1 rows and columns,
and its rank isn. Its diagonal entries are all equal to 2, and its off-diagonal
entries are integers0. If m = (m;)i¢, is the column vector formed by the
coefficients in (1.2.2), we haydm = 0.

The Dynkin diagramof Sis the graph with vertex seét, in which each pair
of distinct vertices, j is joined byd;; edges, wherd;; = max(njj|, n;i[). We
haved;; < 4 in all cases. For each pair of vertideg such that;; > 0 and
lai| > |ajl, we insert an arrowhead (or inequality sign) pointing towards the
vertex j corresponding to the shorter root.

If Sis reduced, thédynkin diagram ofS¥ is obtained from that ofS by
reversing all arrowheads. B = S(R) as in (1.2.1), whereR is irreducible
and reduced, the Dynkin diagram 8fis the ‘completed Dynkin diagram’ of
R([B1], ch. 6).

If Sis reduced, the Cartan matrix and the Dynkin diagram each determine
S up to similarity. If Sis not reduced, the Dynkin diagram still determirgs
provided that the verticeis € | such that 2 € Sare marked (e.g. with an
asterisk).

1.3 Classification of affine root systems

Let Sbe an irreducible affine root system.Sfis reduced, thei$is similar to
eitherS(R) or S(R)V (1.2.1), wherdRis anirreducible root system.Ris of type
X, whereX is one of the symbolg\,, B, C,, D, BC,, Eg, E7, Eg, F4, G,
we say thatS(R) (resp.S(R)") is of type X (resp.X").

If Sis not reduced, it determines two reduced affine root systems

S ={aeS:3a¢S, S={acS:2a¢$s

with the same affine Weyl group, arBl= § U $. We say thatSis of type
(X, Y)whereX, Y are the types 0§, S; respectively.
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The reduced and non-reduced irreducible affine root systems are listed below
((1.3.1)—(1.3.18)). In this listsy, &2, . . . is a sequence of orthonormal vectors
in a real Hilbert space.
For each type we shall exhibit
(a) an affine root syster8 of that type;
(b) a basis ofS;
(c) the Dynkin diagram of. Here the numbers attached to the vertices of the
diagram are the coefficients; in (1.2.2).

We shall first list the reduced systems ((1.3.1)—(1.3.14)) and then the non-
reduced systems ((1.3.15)—(1.3.18)).

(1.3.1) Type A (n=>1).

@ £ —g)+r(l<si<j=n4+1;r €Z).
(b) a0 =—e1+en1+1, a=¢e—e(l<i=<n).

(c) 1 1 1 i :1
1 1
(n=1) n=2)

(1.3.2) Type B (n > 3).

(@ Lei+r(A<i<nmreZ), xsEej+r(l<i<j=nrel).
(b) ag=—-e1—e2+1, a=e—61(1<i<n-1), a,=en.

(1.3.3) Type B (n > 3).

(@ £2si+2r (I<i<mreZ) e xe+r(l<i<j=<nre?).
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(b) ap=—e1—e2+1 a=¢&—-e1(1<i=<n-1), a,=2,.
1

(c) 2 2 2 1

(1.3.4) Type G (n > 2).

(@ *2s+r(A<i<mreZ) fste+r(l<i<j<nrel).
(b) ag=—-2e1+1, a=¢—e1(1<i<n-1) ay=2en.

1 2 2 2 2 1

(1.3.5) Type G (n > 2).

(@ +e+3r(I1<i<mreZ) ate+r(l<i<j=<nrel).
(b) aa=-e14+3 a=s—-eu(l<i<n-—1), a,=ep.

1 1 1 1 1 1

(1.3.6) Type BG (n > 1).

@ xei+r(A<i<snre?), £2+2r+1(1<i=<n;reZ)
tei e +r(l<i<j<nrel).
(b) ag=—-2e14+1, a=¢—¢61(1<i<n-=-1), a,=¢n.
1 2 1 2 2 2 2 2

(n=1) (n=2)

(1.3.7) Type D, (n > 4).

(@ fei e +r(l<i<j<nrel)
(b) ag=—e1—e2+1, a=¢—641(1=<i<n-1), a =éen1+én.
© 1 1

:2 2 2 2:
1 1
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These are the “classical” reduced affine root systems. The next seven types
((1.3.8)—(1.3.14)) are the “exceptional” reduced affine root systems. In (1.3.8)—
(1.3.10) let

1 .
wi:gi_§(£1+...+89) 1=<i=<9).

(1.3.8) Type E.

(@ f(w —w)+r(1<i<j=<6;rel),
o +ojto)+r(A<i<j<k=<6reZ),
+(w +wr+ -+ wg)+r (r € Z).
(b) ag=—(w1+--+we)+1 & =0 —wip(lsi=<H),
g = w4 + ws + we.
(C)é 2 3 2

1
O

(2.3.9) Type E.

(@) o —w)+rA<i<j=<T7rek),

o +ojto)+r(A<i<j<k=<7;reZ)
i+ - +o+--For)+r (A<i <71 €7).
(b) a=—(w1+ - +we)+1 a=w—wiy(l<i<6),
a7 = ws + we + W7.
(C)é 2 3 4 3 2

|

2

OR

(1.3.10) Type E.

(@) (wi —w))+r(l<i<j=<9relZ)

o +ojto)+r(A<i<j<k=<9re2).
b)) a@=w1—w2+1, g=winu—wi2(l<i=<7),
ag = w7 + wg + wy.

(c)é 2 3 4 5 68 4 2
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(1.3.11) Type R.

(@ ei+r(l<i<4reZ), ete+r(1l<i<j=<4rel)
%(i81i82i83i84)+r (I’ € Z)

(b) ag=—s1—ex+1, ay=s—€3 @=¢e3—¢4, a3=¢y,
= 3(e1— 62 — 63 — £4).

)1 2 3_ 4 2
o —>0—0

(1.3.12) Type F.

(@) 26 +2r (A<i<4reZ), exej+r(l<i<j<4rel)
ey ey teztes+ 2r (rez).

(b) ap=—e1—e2+1, ay=¢e2—¢3 @ =¢3—¢64 ag=2¢,
aq=8&1— &2 — €3 — &4.

1 2 3 _2 1
(© 1 s _2 1

(1.3.13) Type G.

(@) £(& — (er+e2+e3)+r (1<i <3;r €Z)

e —e)+r(1<i<j=<3rez).
(b) av=61—e2+1, a =g —¢3 a=e3— 3(c1+ 62+ €3).
(c) 1 2 3

o—ac=o0

(1.3.14) Type G.

(@ +@Be —(e1+e2+¢e3)+3I (L<i=<3;reZ);
e —e)+r(A<i<j=3rei).
(b) ag=¢e1—e24+1, a1 =er—¢e3, a=3e3— (614 &2+ ¢3).
2 1

© & S

We come now to the non-reduced affine root systems. In the Dynkin diagrams
below, an asterisk placed over a vertex indicates that i§ the affine root
corresponding to that vertex in a basis®then 2; € S.

(2.3.15) Type(BC,, C,) (n > 1).

(@) L& +r, £2+r(1<i=<nre?Z),
te e +r(l<i<j=<nre).



1.3 Classification of affine root systems 11

(b) ag=—-2e1+1 a=¢g—-¢c(1<i<n-1), a,=en

© 1% 2 1g 2 2 2 2§ 2
(n=1) (n=2)

(1.3.16) Type(Cy, BC,) (n > 1).

(@) L& +3r, £25 +2r (L<i<n;r €2
tei e +r(l<i<j<nrel).

(b) a=—e1+3. & =& —&41. an=eén

() * *
11 11 1 1 1~ 1
(n=1) (n=2)

(1.3.17) Type(Cz, C3), (Bn, BY) (0 = 3).

(@) L& +r, £2+2r (L <i <n;r e?Z),
teite+r(l<i<j=nre 7).
(b) ag=—e1—e2+1, a=¢—e1(1<i<n-1) a5 =en.

(c) 1
oo :>F_&_W—AF—m>£
1 2 1 2 2 2 2 2

1

(n=2) (n=23)

(1.3.18) Type(CY,C,) (n > 1).

(@) +&+3r, £25+r (L<i<n;reZ)
teitej+r(l<i<j<nrel).

(b) ag=—e1+3. a=¢c—61(1<i=<n-1) a =en

(C) * * * *
oc—o a T o— '+ —O0—Ca—>D
1 1 1 1 1 1 1 1
(n=1) (n=2)

For each irreducible affine root systednlet o(S) denote the number &/s -
orbits inS. If Sis reduced, the list above shows tbé®) < 3, and thab(S) = 3
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only whenSis of typeC,,, Cy or BCy(n > 2). If Sis notreduced, the maximum
value ofo(S) is 5, and is attained only wheiis of type C/, Cy) (n > 2). The
five orbits areO;, ..., Os where, in the notation of (1.3.18) above,

Or=({tg+r:1<i<nreZ}, 0,=20;, O3=0;+3,
04 =203=0+1 Os={tgte+r:1l<i<j<nrelZ}.

Finally, the list above shows that all the non-reduced irreducible affine root
systems of rank are subsystems of (1.3.18), obtained by deleting one or more
of the Ws-orbits; and so are the “classical” root systems (1.3.2)—(1.3.7).

1.4 Duality

In later chapters, in order to formulate conveniently certain dualities, we shall
need to consider not one but a pai §) of irreducible affine root systems, to-
getherwith a pairR, R) of finite root systems and a palt ( L") of lattices inV.

Let R be a reduced finite irreducible root systenMnand letP (resp.PY)
denotethe weight lattice oR (resp.RY), andQ (resp.QV) the root lattice of
R (resp.RY). Fix a basisd;)ic|, Of R, and lety be the highest root dR relative
tothis basis. In (1.4.1) and (1.4.2) below we shall assume that the scalar product
onV is normalized so thdip|? = 2 and therefore@" = . (This conflicts with
standard usage, as§rL.3, only whenR is of typeC, (1.3.4).)

The pairs §, S), (R, R), (L, L’) to be considered are the following:

(1.41) S=9R), S=9RY); R=R"; L=P, L'=P".

ThenS(resp.S) has a basisX)ic| (resp. &)ici) wherea; = «; (i # 0), a0 =
—p+c a =qo (i #0),8 = -y +c, wherey is the highesshort
root of R.

(1.4.2) S=S=9R); R=R L=L =P
ThenS = S has a basisX)ici = (&), Wherea; = & = o if i # 0, and
ag=a,=—-¢p+C

(1.4.3) S=Sisoftype C;,Cn); R=RisoftypeC,;L =L = Q. We
shall assume th&is as givenin (1.3.18),sothat = o = i — i1 (1 <i <
n — 1) andap, = 2a, = 2¢,, andL = Z".

For eachr € R, lete’(= « or«") be the corresponding elementRf Then
<A\, a>and <, o’> are integers, forall e L, )" € L’ anda € R.
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In each case let
(1.4.4) Q' =L/QY,
a finite abelian group. Also let
<L,L'>={<a,A>:relL, M el’}.
Then we have
(1.4.5) <L,L>=¢€e17Z

wheree is the exponent of2’, except in case (1.4.2) wheRiis of type B, or
Con, in which casee = 1.

Anticipating Chapter 2, etV = W(R, L") be the group of displacements of
V generated by the Weyl groufyy of R and the translationg1’), 2’ € L', so
thatW is the semidirect product aip andt(L’):

(1.4.6) W =W(R, L") = Wy x t(L).
Dually, let
(1.4.8) W = W(R, L) = Wy x t(L).

By transposition, bothV andW’ act onF.
(1.4.7) W permutes S and VYWermutes S

This follows from the fact, remarked above, that’, > and <A, a’> are
integers, foralh € L, 2 € L’ anda € R.

Now let
(1.4.8) A=LZc

wherecy = e 1c. We shall regard elements af as functions oV: if f € A,
sayf = A +rcowherer € L andr € Z, then

f(x)=<ir,x>+elr

for x € V. ThenA is a lattice inF.

(1.4.9) A is stable under the action of W.
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Proof Letw € W, sayw = vt()) wherev € Wo andX € L. If f =
A +TrCco € A andx € V, we have

wi(x) = f(wx)= fix=21)
=< v Ix—A>+elr
= <vA, X>+€e — <A, V>

so that
wf =vA+(r —e<i, A>)c

isin A, sincee<i, A'> € Z by (1.4.5). O

1.5 Labels

Let Sbe an irreducible affine root system agih4 and leWW = W(R, L'). A
W-labelling kof Sis a mappindk : S — R such thak(a) = k(b) if a, bare in
the samewn-orbit in S.

If S= S(R) whereR is simply-laced (typed, D, E), all the labelk(a)
are equal. IfS = S(R) or S(R)Y whereR # RV, there are at most two labels,
one for short roots and one for long roots. FinallySifs of type C,/, C) as
in (1.4.3), there are fiveV-orbits O4, ..., Os in S, as observed i§1.3, and
correspondingly five labels,, ..., ks, wherek; = k(a) fora € O;.

Given a labellingk of S as above, we define dual labelling K of S, as
follows:

(@ ifS=9R),S =SRY)(1.4.1) andd’ = a” +rc € S, then
k'(@) = k(x +rc).

(b) If S=S = SR)” (1.4.2), therk’ = k.

(c) If S=Sisoftype C,.Cn) (1.4.3), the dual labelg (1 <i <5) are
defined by

ki = 3(ki + ko + k3 + Ka),
ko = 2(ky + ko — ks — Ka),

(1.5.1) ks = 3(ky — ka2 + ks — ki),
k, = %(kl — ko — kz + ka),
ké = ks,

andk'(a) =k'ifa e O;.
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In all cases let

1 !
= Z K (o),

aeR*

% > k@)

aeR*

(1.5.2)

Pk

whereR™" isthe set of positive roots & determined by the basig;(). Explicitly,
whenS = §(R) (1.4.1) we have

1
=5 Z k(o)e,

aeRT

L1
=3 Z k(o)

aeR*

whenS = S(R)Y (1.4.2) we have

, 1
Pk = Py = E Z k(()lv)a;

aeRt

and wherSis of type C,/, Cp) (1.4.3), so thaR is of typeC,,

n

pe =Y (K + (0 —i)ks)ei.

i=1

n
p=D (ki +(n—iks)ei.
i=1
For eachw € Wy, we have

1
w o, = > Z o(wa)k(e™)a',
acR*

(1.5.3) 1
wlpe = = Z o(wa)K (a")a,

2aER+
whereo (wa) = +1 or—1 according awa € RT or R™. In particular, ifi € |,
i # 0 we have

!

S o = P — K(ef")er],
1.5.4
(1.5.4) sow = pw — K (g )eti.

(1.5.5) If the labels Ko{"), K' (") are all nonzero, themw, and py are fixed
only by the identity element of gV O



16 1 Affine root systems

Notes and references

Affine root systems were introduced in [M2], which contains an account of
their basic properties and their classification. The list of Dynkin diagrams in
§1.3 will also be found in the article of Bruhat and Tits [B3] (except that
both [M2] and [B3] omit the diagram (1.3.17) when= 2). The reduced
affine root systems (1.3.1)—(1.3.14) are in one-one correspondence with the
irreducible affine (or Euclidean) Kac-Moody Lie algebras, and correspondingly
their diagrams appear in Moody'’s paper [M9] and Kac’s book [K1].





